Основные разделы


Анализ подходов встроенного самотестирования однородных Сетей

Существует два основных подхода встроенного самотестирования, которые применяются к цифровым схемам:

· детерминированный подход;

· псевдослучайный подход.

Согласно детерминированному подходу, в схеме находится генератор определенных тестовых последовательностей и гарантируется определенное покрытие неисправностей, основанное на принятой модели неисправности.

Для правильного и подробного описания этого подхода необходимо ввести основные определения и понятия.

В качестве абстрактной модели дискретного устройства (ДУ) с памятью будем использовать автомат Мили, определяемый пятеркой

А = (X, Y, Z, d, l), (3.1)

где X = { X1, X2,…., Xm } - множество букв входного алфавита;

Z = { Z1, Z2,…, Zn } - множество состояний автомата;

Y = { Y1, Y2, …Yr } - множество букв выходного алфавита;

d (Zi, Xk) = Zj; Zi, ZjZ; XkX; i, j = ; k = - множество функций переходов автомата;

l (Zi, Xk) = ya; yaY, a = - множество функций выхода автомата.

В дальнейшем изложении будут использоваться следующие обозначения и понятия:

Xj = X1 X2 … Xk - входное слово или входная последовательность из К букв;

l (Xj) = k - длина последовательности;

Yj = Y1 Y2 … Yk - выходное слово или выходная последовательность длины l (Yj) = k.

Любое конечное множество состояний автомата будем называть s-множеством. Элементы, образующие s-множество, не обязательно различны. s-множество, содержащее единственный элемент, называется простым, а содержащее несколько одинаковых элементов - кратным. s-множество, однородно, если все элементы одинаковы.

l (Zi, Xj) - выходная последовательность автомата, первоначально находящегося в состоянии Zi и проявляющаяся в результате приложения входной последовательности Xj.

Многие задачи теории автоматов (кодирование состояний, декомпозиция автоматов, минимизация числа состояний и другие) успешно решаются путем анализа разбиений состояний автомата. Термин "разбиение" имеет в математике ряд значений [10]. Вообще, под разбиением принято понимать всякое расчленение целого на части.

Определение 3.1 Пусть В подмножество Z. Разбиением pi множества Z называют совокупность таких подмножеств Bi, что их по парные пересечения - пустые множества, а объединение всех подмножеств Bi равно Z.

Подмножество Bi называют блоком разбиения pi множества Z.

Пример 3.1 Пусть Z={A, B, C, D, E, F}. Тогда

pa = {},

pb={ },

где p - разбиения множества Z.

Говорят, что для пары разбиений pa, pb, определенных на множестве Z, разбиение pa больше или равно разбиению pb (pa pb, pb pa), если каждый блок разбиения pb содержится в блоке pa. Например, разбиение pa и pb из примера 3.1 можно упорядочить в виде pa pb.

Разбиение, в котором каждый блок включает один элемент множества Z, является p (0) - разбиением, а разбиение, содержащее в одном блоке все элементы Z, является p (1) - разбиением.

Определение 3.2 Если p1 и p2 - разбиения множества Z, то произведением разбиений (p1 p2) является разбиение, полученное в результате пересечения каждого блока из p1 с каждым блоком из p2.

Перейти на страницу: 1 2 3

Прочитайте еще и эти статьи:

Система сигнализации ОКС-7
Система сигнализации № 7 - это универсальная многофункциональная система межстанционной сигнализации, ориентированная на поддержку практически всех уже известных, а также будущих услуг связи. Ее огромный потенциал объясняется блочной функционал ...

Разработка системы космической связи военного назначения с коммутируемым спутниковым моноканалом
О серьезности проблемы влияния помех - на приемо-передающие каналы спутниковых систем связи говорят следующие факты. . Заметное увеличение числа публикаций и сообщений по данной проблеме. . Выработка международными и национальными орган ...

© Copyright 2020 | www.techattribute.ru